Stats without Tears

Relational Symbols			
$=$	equals is the same as	\neq	is not equal to is different from
>	is greater than is more than exceeds is above	$\begin{gathered} \geq \\ \text { or }>= \end{gathered}$	is greater than or equal to is at least is not less than
<	is less than is fewer than is below	$\begin{gathered} \leq \\ \text { or }<= \end{gathered}$	is less than or equal to is at most does not exceed is not greater than is no more than
	A $<\mathrm{x}<\mathrm{B}$	x is between A and B , exclusive	
	$\mathrm{A} \leq \mathrm{x} \leq \mathrm{B}$	x is between A and B, inclusive	
	$A \approx B$	A is approximately equal to B	

sample statistic	population parameter	description
n	N	number of members of sample or population
攺 x -bar"	$\begin{gathered} \mu \text { "mu" } \\ \text { or } \mu_{\mathrm{x}} \end{gathered}$	mean
M or Med or $\tilde{\mathrm{x}}$ "x-tilde"	(none)	median
$\begin{gathered} \mathrm{s} \\ \text { (TIs say } \mathrm{Sx} \text {) } \end{gathered}$	$\begin{gathered} \sigma \text { "sigma" } \\ \text { or } \sigma_{\mathrm{x}} \end{gathered}$	standard deviation For variance, apply a squared symbol (s^{2} or σ^{2}).
r	ρ "rho"	coefficient of linear correlation
\hat{p} "p-hat"	p	proportion
z t χ^{2}	(n / a)	cal culated test statistic

Roman Letters

- $b=y$ intercept of a line.
- BD or $\mathrm{BPD}=$ binomial probability distribution.
- $\mathrm{CI}=$ confidence interval.
- CLT = Central Limit Theorem.
- $d=$ difference between paired data.
- $d f$ or v "nu" = degrees of freedom in a Student's t or χ^{2} distribution.
- $\mathrm{DPD}=$ discrete probability distribution.
- $E=$ margin of error, $\mathrm{a} / \mathrm{k} / \mathrm{a}$ maximum error of the estimate.
- $f=$ frequency.
- $f / n=$ relative frequency.
- $\mathrm{HT}=$ hypothesis test.
- $H o=$ null hypothesis.
- H 1 or $\mathrm{Ha}=$ alternative hypothesis.
- $I Q R$ = interquartile range, Q3- Q1.
- $m=$ slope of a line.
- \mathbf{M} or Med = median of a sample.
- $\mathrm{N}=$ population size.
- $\mathrm{ND}=$ normal distribution, whose graph is a bell-shaped curve; also "normally distributed".
- $\quad p=$ probability value. The specific meaning depends on context.

In geometric and binomial probability distributions, p is the probability of "success" on any one trial and $q=(1-p)$ is the probability of "failure" (the only other possibility) on any one trial.
In hypothesis testing, p is the calculated p-value, the probability that rejecting the null hypothesis would be a wrong decision.

- $\mathrm{P}(A)=$ the probability of event A.
- $\mathrm{P}(A C)$ or $\mathrm{P}($ not $A)=$ the probability that A does not happen.
- $\mathrm{P}(B \mid A)=$ the probability that event B will happen, given that event A definitely happens. It's usually read as the probability of B given A. Caution! The order of A and B may seem backward to you at first.
- $P 8 O$ or $P 8 O=80$ th percentile ($P k$ or $P k=k$-th percentile)
- $q=$ probability of failure on any one trial in binomial or geometric distribution, equal to ($1-p$) where p is the probability of success on any one trial.
- Q1 or $Q 1$ = first quartile ($Q 3$ or $Q 3=$ third quartile)
- $r=$ linear correlation coefficient of a sample.
- $R^{2}=$ coefficient of determination.
- $\boldsymbol{S}=$ standard deviation of a sample.
- SD (or s.d.) = standard deviation.
- $\operatorname{SEM}=$ standard error of the mean (symbol isx $\amalg \amalg$
- $\operatorname{SEP}=$ standard error of the proportion (symbol is $\sigma p \mathrm{X}$
- $X($ capital $X)=$ a variable.
- x (lower-case x) = one data value ("raw score"). As a column heading, x means a series of data values.
- $\quad \mathrm{x}$ 陇-bar" = mean of a sample.
- x K-tilde" = median of a sample.
- $\hat{\mathrm{y}}$ " y -hat" = predicted average y value for a given x , found by using the regression equation.
- $Z=$ standard score or z-score.
- $z($ area $)$ or $z a r e a=$ the z-score, such that that much of the area under the normal curve lies to the right of that z . This is not a multiplication!

Greek Letters

- \quad "alpha" = significance level in hypothesis test, or acceptable probability of a Type I error (probability you can live with).
- β "beta" = in a hypothesis test, the acceptable probability of a Type II error; $1-\beta$ is called the power of the test.
- $\mu \mathrm{mu}$, pronounced "mew" = mean of a population.
- V nu: see $d f$, above.
- ρ rho, pronounced "roe" = linear correlation coefficient of a population.
- σ "sigma" = standard deviation of a population.
- σx Kigma-sub-x-bar"; see SEM above.
- σ pXsigma-sub-p-hat"; see SEP above.
- \sum "sigma" = summation. (This is upper-case sigma. Lower-case sigma, σ, means standard deviation of a population.
- X^{2} "chi-squared" $=$ distribution for multinomial experiments and contingency tables.

