Basic Waterworks Technology

$\mathrm{ft}^{2}=$ square foot
$\mathrm{ft}^{3}=$ cubic foot
lbs = pounds
head $=$ vertical height of water
psi $=$ pounds per square inch
$\mathrm{mg} / \mathrm{L}=$ milligrams per liter
$\mathrm{ppm}=$ parts per million
$\mathrm{ug} / \mathrm{L}=$ micrograms per liter
$\mathrm{ppb}=$ parts per billion

Conversions

$\pi=3.14$
$1 \mathrm{cu} \mathrm{ft}=7.48 \mathrm{gal}$
$1 \mathrm{gal}=8.34 \mathrm{lbs}$
$1 \mathrm{cfs}=448.8 \mathrm{gpm}(449)$
1 day $=1,440 \mathrm{~min}$
1 acre $=43,560 \mathrm{sq} \mathrm{ft}$
1 acre $\mathrm{ft}=43,560 \mathrm{cu} \mathrm{ft}$
1 acre $\mathrm{ft}=325,829 \mathrm{gal}$
$1 \mathrm{psi}=2.31 \mathrm{ft}$ head
1 ft head $=.433 \mathrm{psi}$
1 mile $=5,280 \mathrm{ft}$
1 ton $=2,000 \mathrm{lbs}$
$1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L}$

RPM $=$ revolutions per minute
$\mathrm{ng} / \mathrm{L}=$ nanograms per liter
$\mathrm{ppt}=$ parts per trillion
gmp $=$ gallons per minute
gpd = gallons per day
cfs $=$ cubic feet per second
$\mathrm{mgd}=$ million gallons per day
$\mathrm{ccf}=$ hundred cubic feet
$\mathrm{hp}=$ horsepower
$1 \mathrm{ppm}=1 \mathrm{mg} / \mathrm{L}$
$1 \mathrm{mg} / \mathrm{L}=1 \mathrm{ppm}$
1 grain $/ \mathrm{gal}=17.12 \mathrm{mg} / \mathrm{L}$
Water HP $=\frac{(T D H)(G P M)}{3960}$
$1 \mathrm{hp}=746$ watts $=0.746 \mathrm{kw}=3960$
gal/min/ft

Metrics

1 gallon (gal) $=3.785$ liters (L)
1 inch $=2.54$ centimeters (cm)
1 foot (ft) $=.305$ meters (m)
1 yard $(y d)=.914$ meters
1 mile $(\mathrm{mi})=1.609$ kilometers (km)
Residual $=$ Dose - Demand

Formulas

Perimeter $=\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{L} 4+\ldots .$.
Circumference $=\pi \mathrm{x}$ diameter in feet
Area of a Rectangle $=\mathrm{L} \times \mathrm{H}$
Area of a Triangle $=($ Base $\times H) / 2$
Area of a Circle $=0.785 \times \mathrm{dia}^{2}$ (in feet)
Volume of a Rectangle $=\mathrm{L} \times \mathrm{H} \times \mathrm{W}=$ ft^{3} x $7.48=\mathrm{gal}$

Volume of a Cylinder $=\operatorname{dia}^{3} \times 0.785 \mathrm{x}$
$\mathrm{H}=\mathrm{ft}^{3} \times 7.48=\mathrm{gal}$
Volume of a Cylinder under $1 \mathrm{ft}=$ $\left(\frac{\left(d i a^{2}\right)(0.785)}{144}\right)(L)=\mathrm{ft}^{3} \times 7.48=\mathrm{gal}$

Perimeter $=\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3+\mathrm{L} 4+\ldots .$.
Circumference $=\pi x$ diameter in feet
Area of a Rectangle $=\mathrm{L} \times \mathrm{H}$
Area of a Triangle $=($ Base $\times H) / 2$
Area of a Circle $=0.785 \times \mathrm{dia}^{2}$ (in feet)
Volume of a Rectangle $=\mathrm{L} \times \mathrm{H} \times \mathrm{W}=$ $\mathrm{ft}^{3} \times 7.48=\mathrm{gal}$

Volume of a Cylinder =
$\operatorname{dia}^{3} \times 0.785 \times H=\mathrm{ft}^{3} \times 7.48=\mathrm{gal}$
Volume of a Cylinder under $1 \mathrm{ft}=$ $\left(\frac{\left(d i a^{2}\right)(0.785)}{144}\right)(L)=\mathrm{ft}^{3} \times 7.48=\mathrm{gal}$

Feet of Head (ft hd) x $.433=$ PSI
psi x $2.31=$ feet of head
$\mathrm{Q}=\mathrm{AxV}$
Q is flow, A is Area, V is velocity
Detention time $=\frac{\text { Volume of tank }(\text { in gal })}{\text { Flow Rate }(\text { ingal } \backslash \text { time })}$
Average $=\frac{\text { Sum of all terms }}{\text { Number of terms }}$
Percent $=\frac{\text { Part }}{\text { Whole }} \times 100$
Celsius $=$ Fahrenheit $-32 / 1.8$
Fahrenheit $=1.8 \times$ Celsius +32

Feet of Head (ft hd) x $.433=$ PSI
psi x $2.31=$ feet of head
$\mathrm{Q}=\mathrm{A} \times \mathrm{V} \mathrm{Q}$ is flow, A is Area, V is velocity
Detention time $=\frac{V \text { olume of tank }(\text { in gal })}{\text { Flow Rate }(\text { ingal } \backslash \text { time })}$
Average $=\frac{\text { Sum of all terms }}{\text { Number of terms }}$
Percent $=\frac{\text { Part }}{\text { Whole }} \times 100$
Celsius $=$ Fahrenheit $-32 / 1.8$
Fahrenheit $=1.8 \times$ Celsius +32

